Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Sci Rep ; 14(1): 7702, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565593

RESUMEN

Utrophin (UTRN), known as a tumor suppressor, potentially regulates tumor development and the immune microenvironment. However, its impact on breast cancer's development and treatment remains unstudied. We conducted a thorough examination of UTRN using both bioinformatic and in vitro experiments in this study. We discovered UTRN expression decreased in breast cancer compared to standard samples. High UTRN expression correlated with better prognosis. Drug sensitivity tests and RT-qPCR assays revealed UTRN's pivotal role in tamoxifen resistance. Furthermore, the Kruskal-Wallis rank test indicated UTRN's potential as a valuable diagnostic biomarker for breast cancer and its utility in detecting T stage of breast cancer. Additionally, our results demonstrated UTRN's close association with immune cells, inhibitors, stimulators, receptors, and chemokines in breast cancer (BRCA). This research provides a novel perspective on UTRN's role in breast cancer's prognostic and therapeutic value. Low UTRN expression may contribute to tamoxifen resistance and a poor prognosis. Specifically, UTRN can improve clinical decision-making and raise the diagnosis accuracy of breast cancer.


Asunto(s)
Neoplasias de la Mama , Animales , Ratones , Humanos , Femenino , Utrofina/metabolismo , Ratones Endogámicos mdx , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Biomarcadores , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Pronóstico , Microambiente Tumoral
2.
Front Microbiol ; 15: 1339576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500582

RESUMEN

Abscisic acid (ABA) is a conserved and important "sesquiterpene signaling molecule" widely distributed in different organisms with unique biological functions. ABA coordinates reciprocity and competition between microorganisms and their hosts. In addition, ABA also regulates immune and stress responses in plants and animals. Therefore, ABA has a wide range of applications in agriculture, medicine and related fields. The plant pathogenic ascomycete B. cinerea has been extensively studied as a model strain for ABA production. Nevertheless, there is a relative dearth of research regarding the regulatory mechanism governing ABA biosynthesis in B. cinerea. Here, we discovered that H3K9 methyltransferase BcDIM5 is physically associated with the H3K14 deacetylase BcHda1. Deletion of Bcdim5 and Bchda1 in the high ABA-producing B. cinerea TB-31 led to severe impairment of ABA synthesis. The combined analysis of RNA-seq and ChIP-seq has revealed that the absence of BcDIM5 and BcHda1 has resulted in significant global deficiencies in the normal distribution and level of H3K9me3 modification. In addition, we found that the cause of the decreased ABA production in the ΔBcdim5 and ΔBchda1 mutants was due to cluster gene repression caused by the emergence of hyper-H3K9me3 in the ABA gene cluster. We concluded that the ABA gene cluster is co-regulated by BcDIM5 and BcHda1, which are essential for the normal distribution of the B. cinerea TB-31 ABA gene cluster H3K9me3. This work expands our understanding of the complex regulatory network of ABA biosynthesis and provides a theoretical basis for genetic improvement of high-yielding ABA strains.

4.
Med ; 5(1): 42-61.e23, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38181791

RESUMEN

BACKGROUND: Oral antiviral drugs with improved antiviral potency and safety are needed to address current challenges in clinical practice for treatment of COVID-19, including the risks of rebound, drug-drug interactions, and emerging resistance. METHODS: Olgotrelvir (STI-1558) is designed as a next-generation antiviral targeting the SARS-CoV-2 main protease (Mpro), an essential enzyme for SARS-CoV-2 replication, and human cathepsin L (CTSL), a key enzyme for SARS-CoV-2 entry into host cells. FINDINGS: Olgotrelvir is a highly bioavailable oral prodrug that is converted in plasma to its active form, AC1115. The dual mechanism of action of olgotrelvir and AC1115 was confirmed by enzyme activity inhibition assays and co-crystal structures of AC1115 with SARS-CoV-2 Mpro and human CTSL. AC1115 displayed antiviral activity by inhibiting replication of all tested SARS-CoV-2 variants in cell culture systems. Olgotrelvir also inhibited viral entry into cells using SARS-CoV-2 Spike-mediated pseudotypes by inhibition of host CTSL. In the K18-hACE2 transgenic mouse model of SARS-CoV-2-mediated disease, olgotrelvir significantly reduced the virus load in the lungs, prevented body weight loss, and reduced cytokine release and lung pathologies. Olgotrelvir demonstrated potent activity against the nirmatrelvir-resistant Mpro E166 mutants. Olgotrelvir showed enhanced oral bioavailability in animal models and in humans with significant plasma exposure without ritonavir. In phase I studies (ClinicalTrials.gov: NCT05364840 and NCT05523739), olgotrelvir demonstrated a favorable safety profile and antiviral activity. CONCLUSIONS: Olgotrelvir is an oral inhibitor targeting Mpro and CTSL with high antiviral activity and plasma exposure and is a standalone treatment candidate for COVID-19. FUNDING: Funded by Sorrento Therapeutics.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Inhibidores de Proteasa de Coronavirus , SARS-CoV-2 , Animales , Humanos , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Catepsina L/antagonistas & inhibidores , COVID-19/prevención & control , Modelos Animales de Enfermedad , Ratones Transgénicos , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19/métodos
5.
Antivir Ther ; 28(6): 13596535231219639, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037795

RESUMEN

BACKGROUND: Previously, we have demonstrated that Apolipoprotein A-I (ApoA-I) could inhibit the secretion of Hepatitis B virus (HBV), suggesting that stimulation of ApoA-I may block particle production. In the present study, we evaluated the anti-HBV effect of RVX-208, a small-molecule stimulator of ApoA-I gene expression. METHODS: RVX-208 was used to treat HepG2.2.15 cell, a HepG2 derived cell line stably producing HBV virus. Real-time PCR was performed to examine the HBV DNA levels. Magnetic particles, which were coated with anti-HBS or anti-HBE antibody, were used to examine the HBsAg and HBeAg levels in the supernatant of cultured HepG2.2.15 cells in combination with the enzyme conjugates that were prepared with horseradish peroxidase labelled anti-HBS or anti-HBE antibody in a double antibody sandwich manner. RNA-seq, immunoblots and real-time PCR were used to analyze the functional mechanism of RVX-208. RESULTS: RVX-208 could elevate the ApoA-I protein levels in HepG2.2.15 cells. In the meantime, RVX-208 significantly repressed HBV DNA, HBsAg and HBeAg levels in the supernatants of HepG2.2.15 cells. RNA-seq data revealed that RVX-208 treatment not only affected the cholesterol metabolism, which is closely related to ApoA-I, but also regulated signalling pathways that are associated with antiviral immune response. Moreover, mechanistic studies demonstrated that RVX-208 could activate cGAS-STING pathway and upregulate the transcription of a series of interferons, pro-inflammatory cytokines and chemokines with antiviral potential that are at the downstream of cGAS-STING pathway. CONCLUSION: Our study demonstrated that RVX-208, an inducer of ApoA-I, could suppress HBV particle production through activation of cGAS-STING pathway.


Asunto(s)
Apolipoproteína A-I , Virus de la Hepatitis B , Humanos , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Antígenos de Superficie de la Hepatitis B , ADN Viral , Antígenos e de la Hepatitis B , Células Hep G2 , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/farmacología
6.
Huan Jing Ke Xue ; 44(11): 5946-5953, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973079

RESUMEN

The waste sector is a significant source of greenhouse gas(GHG) emissions and clarifying its emission trends and characteristics is the premise for formulating GHG emission reduction strategies. Using the IPCC inventory model, the GHG emissions from the municipal solid waste(MSW) sector in China during 2010 to 2020 were estimated. The results showed that GHG emissions increased from 42.5 Mt in 2010 to 75.3 Mt in 2019, then decreased to 72.1 Mt in 2020. MSW landfills were the main source of GHG emissions. Further, with the increase in the proportion of waste incineration, the proportion of GHG incineration increased rapidly from 16.5% in 2010 to 60.1% in 2020. In terms of regional distribution, East and South China were the regions with the highest emissions, and Guangdong, Shandong, Jiangsu, and Zhejiang were the provinces with the largest GHG emissions. Implementing MSW classification, changing the MSW disposal modes from landfilling to incineration, improving the LFG collection efficiency of landfills, and using biological functional materials as the cover soil to strengthen the methane oxidation efficiency are the main measures to achieve GHG emission reduction in waste sectors.

7.
Lancet Reg Health West Pac ; 38: 100835, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37484496

RESUMEN

Background: SIM0417 (SSD8432) is an orally administered coronavirus main proteinase (3CLpro) inhibitor with potential anti-SARS-CoV-2 activity. This study aimed to evaluate the efficacy and safety of SIM0417 plus ritonavir (a pharmacokinetic enhancer) in adults with COVID-19. Methods: This was a randomised, double-blind, placebo-controlled, phase 1b study in China. Adults with asymptomatic infection, mild or moderate COVID-19 were randomly assigned (3:3:2) to receive either 750 mg SIM0417 plus 100 mg ritonavir, 300 mg SIM0417 plus 100 mg ritonavir or placebo every 12 h for 10 doses. The main efficacy endpoints included SARS-CoV-2 viral load, proportion of participants with positive SARS-CoV-2 nucleic acid test and time to alleviation of COVID-19 symptoms. This trial is registered with ClinicalTrials.gov, NCT05369676. Findings: Between May 12 and August 29, 2022, 32 participants were enrolled and randomised to high dose group (n = 12), low dose group (n = 12) or placebo (n = 8). The viral load change from baseline in high dose group was statistically lower compared with placebo, with a maximum mean difference of -2.16 ± 0.761 log10 copies/mL (p = 0.0124) on Day 4. The proportion of positive SARS-CoV-2 in both active groups were lower than the placebo. The median time to sustained alleviation of COVID-19 symptoms was 2.0 days in high dose group versus 6.0 days in the placebo group (HR = 3.08, 95% CI 0.968-9.818). SIM0417 plus ritonavir were well tolerated with all adverse events in grade 1. Interpretation: SIM0417 plus ritonavir was generally well tolerated. The efficacy of SIM0417 showed a monotonic dose-response relationship, and the 750 mg SIM0417 plus 100 mg ritonavir was selected as the recommended clinical dose. Funding: The study was funded by Jiangsu Simcere Pharmaceutical Co., Ltd.

8.
Biomater Sci ; 11(17): 5918-5930, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37470092

RESUMEN

Pyroptosis is a proinflammatory form of cell death mediated by members of the gasdermin family, and is a powerful tool against cancer. Herein, a pH-responsive doxorubicin (DOX)-encapsulating zeolitic imidazolate framework-8 (ZIF-8) nanoparticle coated with a carboxybetaine-based zwitterionic polymer (DOX@ZIF-8@PCBMA) was prepared. Furthermore, decitabine (DAC) was loaded to obtain a pyroptosis nanotuner (DOX@ZIF-8@PCBMA-DAC). This nanotuner displayed extended blood circulation and enhanced tumor accumulation. In addition, the ZIF-8 structure and disulfide-crosslinked PCBMA coating endowed DOX@ZIF-8@PCBMA-DAC with acidic-pH- and glutathione-responsive degradation. The nanotuner could robustly activate caspase-3 to induce gasdermin E (GSDME)-dependent pyroptosis via the sustained release of DAC and DOX, contributing to excellent tumor suppression with negligible side effects, which may provide novel insights into traditional chemotherapy.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Estructuras Metalorgánicas/química , Piroptosis , Gasderminas , Doxorrubicina/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología
9.
Front Aging ; 4: 1126172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229241

RESUMEN

Objective: This study aimed to identify factors significantly associated with the occurrence of osteoporosis in elderly and very elderly patients. Methods: Elderly hospitalized patients who were older than 60 years old, from the Rehabilitation Hospital from December 2019 to December 2020 were selected. Barthel index (BI), nutritional assessment, the causes of bone mineral density (BMD) reductions in elderly and elderly patients were analysed. Results: A total of 94 patients (83.56 ± 8.37 years old) were enrolled. With increasing age, the BMD of the lumbar spine, femoral neck, and femoral shaft of elderly patients significantly decreased, and the incidence of osteoporosis (OP) significantly increased. The BMD of the lumbar spine was negatively correlated with female and positively correlated with serum 25-hydroxyvitamin D levels, the difference between actual body weight and ideal body weight, and blood uric acid levels; The BMD of the femoral neck was negatively correlated with age and female, and positively correlated with height and geriatric nutrition risk index score. The BMD of the femoral shaft was negatively correlated with female and positively correlated with BI. Conclusion: With increasing age, the BMD of the lumbar spine and the femoral shaft significantly decreased, and the incidence of OP significantly increased in elderly and very elderly patients. Aric acid may protect bone health in elderly patients. Early attention to the nutritional status, exercise capacity, 25-hydroxyvitamin D level, and blood uric acid level in the elderly population can help identify high-risk elderly patients with OP.

10.
mSystems ; 8(3): e0014323, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246882

RESUMEN

Bathyarchaeota, known as key participants of global elements cycling, is highly abundant and diverse in the sedimentary environments. Bathyarchaeota has been the research spotlight on sedimentary microbiology; however, its distribution in arable soils is far from understanding. Paddy soil is a habitat similar to freshwater sediments, while the distribution and composition of Bathyarchaeota in paddy soils have largely been overlooked. In this study, we collected 342 in situ paddy soil sequencing data worldwide to illuminate the distribution patterns of Bathyarchaeota and explore their potential ecological functions in paddy soils. The results showed that Bathyarchaeota is the dominant archaeal lineage, and Bathy-6 is the most predominant subgroup in paddy soils. Based on random forest analysis and construction of a multivariate regression tree, the mean annual precipitation and mean annual temperature are identified as the factors significantly influencing the abundance and composition of Bathyarchaeota in paddy soils. Bathy-6 was abundant in temperate environments, while other subgroups were more abundant in sites with higher rainfall. There are highly frequent associations between Bathyarchaeota and methanogens and ammonia-oxidizing archaea. The interactions between Bathyarchaeota and microorganisms involved in carbon and nitrogen metabolism imply a potential syntrophy between these microorganisms, suggesting that members of Bathyarchaeota could be important participants of geochemical cycle in paddy soils. These results shed light on the ecological lifestyle of Bathyarchaeota in paddy soils, and provide some baseline for further understanding Bathyarchaeota in arable soils. IMPORTANCE Bathyarchaeota, the dominant archaeal lineage in sedimentary environments, has been the spotlight of microbial research due to its vital role in carbon cycling. Although Bathyarchaeota has been also detected in paddy soils worldwide, its distribution in this environment has not yet been investigated. In this study, we conducted a global scale meta-analysis and found that Bathyarchaeota is also the dominant archaeal lineage in paddy soils with significant regional abundance differences. Bathy-6 is the most predominant subgroup in paddy soils, which differs from sediments. Furthermore, Bathyarchaeota are highly associated with methanogens and ammonia-oxidizing archaea, suggesting that they may be involved in the carbon and nitrogen cycle in paddy soil. These interactions provide insight into the ecological functions of Bathyarchaeota in paddy soils, which will be the foundation of future studies regarding the geochemical cycle in arable soils and global climate change.


Asunto(s)
Euryarchaeota , Suelo , Humanos , Suelo/química , Amoníaco/metabolismo , Archaea/metabolismo , Ambiente , Euryarchaeota/metabolismo , Carbono/metabolismo
11.
Acta Pharm Sin B ; 13(4): 1383-1399, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37139430

RESUMEN

Exosome is an excellent vesicle for in vivo delivery of therapeutics, including RNAi and chemical drugs. The extremely high efficiency in cancer regression can partly be attributed to its fusion mechanism in delivering therapeutics to cytosol without endosome trapping. However, being composed of a lipid-bilayer membrane without specific recognition capacity for aimed-cells, the entry into nonspecific cells can lead to potential side-effects and toxicity. Applying engineering approaches for targeting-capacity to deliver therapeutics to specific cells is desirable. Techniques with chemical modification in vitro and genetic engineering in cells have been reported to decorate exosomes with targeting ligands. RNA nanoparticles have been used to harbor tumor-specific ligands displayed on exosome surface. The negative charge reduces nonspecific binding to vital cells with negatively charged lipid-membrane due to the electrostatic repulsion, thus lowering the side-effect and toxicity. In this review, we focus on the uniqueness of RNA nanoparticles for exosome surface display of chemical ligands, small peptides or RNA aptamers, for specific cancer targeting to deliver anticancer therapeutics, highlighting recent advances in targeted delivery of siRNA and miRNA that overcomes the previous RNAi delivery roadblocks. Proper understanding of exosome engineering with RNA nanotechnology promises efficient therapies for a wide range of cancer subtypes.

12.
Acta Pharmacol Sin ; 44(10): 2004-2018, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37225844

RESUMEN

Doxorubicin is a common chemotherapeutic agent in clinic, but myocardial toxicity limits its use. Fibroblast growth factor (FGF) 10, a multifunctional paracrine growth factor, plays diverse roles in embryonic and postnatal heart development as well as in cardiac regeneration and repair. In this study we investigated the role of FGF10 as a potential modulator of doxorubicin-induced cardiac cytotoxicity and the underlying molecular mechanisms. Fgf10+/- mice and an inducible dominant negative FGFR2b transgenic mouse model (Rosa26rtTA; tet(O)sFgfr2b) were used to determine the effect of Fgf10 hypomorph or blocking of endogenous FGFR2b ligands activity on doxorubicin-induced myocardial injury. Acute myocardial injury was induced by a single injection of doxorubicin (25 mg/kg, i.p.). Then cardiac function was evaluated using echocardiography, and DNA damage, oxidative stress and apoptosis in cardiac tissue were assessed. We showed that doxorubicin treatment markedly decreased the expression of FGFR2b ligands including FGF10 in cardiac tissue of wild type mice, whereas Fgf10+/- mice exhibited a greater degree of oxidative stress, DNA damage and apoptosis as compared with the Fgf10+/+ control. Pre-treatment with recombinant FGF10 protein significantly attenuated doxorubicin-induced oxidative stress, DNA damage and apoptosis both in doxorubicin-treated mice and in doxorubicin-treated HL-1 cells and NRCMs. We demonstrated that FGF10 protected against doxorubicin-induced myocardial toxicity via activation of FGFR2/Pleckstrin homology-like domain family A member 1 (PHLDA1)/Akt axis. Overall, our results unveil a potent protective effect of FGF10 against doxorubicin-induced myocardial injury and identify FGFR2b/PHLDA1/Akt axis as a potential therapeutic target for patients receiving doxorubicin treatment.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Animales , Ratones , Doxorrubicina , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción
13.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930539

RESUMEN

Drosophila gunungcola exhibits reproductive activities on the fresh flowers of several plant species and is an emerging model to study the co-option of morphological and behavioral traits in male courtship display. Here, we report a near-chromosome-level genome assembly that was constructed based on long-read PacBio sequencing data (with ∼66× coverage) and annotated with the assistant from RNA-seq transcriptome data of whole organisms at various developmental stages. A nuclear genome of 189 Mb with 13,950 protein-coding genes and a mitogenome of 17.5 kb were acquired. Few interchromosomal rearrangements were found in the comparisons of synteny with Drosophila elegans, its sister species, and Drosophila melanogaster, suggesting that the gene compositions on each Muller element are evolutionarily conserved. Loss events of several OR and IR genes in D. gunungcola and D. elegans were revealed when orthologous genomic regions were compared across species in the D. melanogaster species group. This high-quality reference genome will facilitate further comparative studies on traits related to the evolution of sexual behavior and diet specialization.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/genética , Genómica , Genoma , Anotación de Secuencia Molecular
14.
Nanomedicine ; 50: 102667, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948369

RESUMEN

Liver cancer such as hepatocellular carcinoma (HCC) poorly responds to chemotherapeutics as there are no effective means to deliver the drugs to liver cancer. Here we report GalNAc decorated exosomes as cargo for targeted delivery of Paclitaxel (PTX) and miR122 to liver tumors as an effective means to inhibit the HCC. Exosomes (Exos) are nanosized extracellular vesicles that deliver a payload to cancer cells effectively. GalNAc provides Exos targeting ability by binding to the asialoglycoprotein-receptor (ASGP-R) overexpressed on the liver cancer cell surface. A 4-way junction (4WJ) RNA nanoparticle was constructed to harbor 24 copies of hydrophobic PTX and 1 copy of miR122. The 4WJ RNA-PTX complex was loaded into the Exos, and its surface was decorated with GalNAc using RNA nanotechnology to obtain specific targeting. The multi-specific Exos selectively bind and efficiently delivered the payload into the liver cancer cells and exhibited the highest cancer cell inhibition due to the multi-specific effect of miR122, PTX, GalNAc, and Exos. The same was reflected in mice xenograft studies, the liver cancer was efficiently inhibited after systemic injection of the multi-specific Exos. The required effective dose of chemical drugs carried by Exos was significantly reduced, indicating high efficiency and low toxicity. The multi-specific strategy demonstrates that Exos can serve as a natural cargo vehicle for the targeted delivery of anticancer therapeutics to treat difficult-to-treat cancers.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , MicroARNs , Humanos , Animales , Ratones , Exosomas/química , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Ligandos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Portadores de Fármacos/química , Paclitaxel , MicroARNs/genética , MicroARNs/metabolismo
15.
Adv Mater ; 35(29): e2208820, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36810905

RESUMEN

Exploration of clinically acceptable blood glucose monitors has been engaging in the past decades, yet the ability to quantitatively detect blood glucose in a painless, accurate, and highly sensitive manner remains limited. Herein, a fluorescence-amplified origami microneedle (FAOM) device is described that integrates tubular DNA-origami nanostructures and glucose oxidase molecules into its inner network to quantitatively monitor blood glucose. The skin-attached FAOM device can collect glucose molecules in situ and transfer the input into a proton signal after the oxidase's catalysis. The proton-driven mechanical reconfiguration of DNA-origami tubes separates fluorescent molecules and their quenchers, eventually amplifying the glucose-correlated fluorescence signal. The function equation established on clinical examinees suggests that FAOM can report blood glucose in a highly sensitive and quantitative manner. In clinical blind tests, the FAOM achieves well-matched accuracy (98.70 ± 4.77%) compared with a commercial blood biochemical analyzer, fully meeting the requirements of accurate blood glucose monitoring. The FAOM device can be inserted into skin tissue in a trivially painful manner and with minimal leakage of DNA origami, substantially improving the tolerance and compliance of the blood glucose test.


Asunto(s)
Glucemia , Nanoestructuras , Conformación de Ácido Nucleico , Automonitorización de la Glucosa Sanguínea , Protones , ADN/química , Nanoestructuras/química , Glucosa
16.
Life Sci Alliance ; 6(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36650056

RESUMEN

Posttranslational protein S-palmitoylation regulates the localization and function of its target proteins involved in diverse cellular processes including meiosis. In this study, we demonstrate that S-palmitoylation mediated by Erf2-Erf4 and Akr1 palmitoylacyltransferases is required at multiple meiotic stages in the fission yeast Schizosaccharomyces pombe We find that S-palmitoylation by Erf2-Erf4 is required for Ras1 localization at the cell periphery to enrich at the cell conjugation site for mating pheromone response. In the absence of Erf2 or Erf4, mutant cells are sterile. A role of Akr1 S-palmitoylating the nuclear fusion protein Tht1 to function in karyogamy is identified. We demonstrate that S-palmitoylation stabilizes and localizes Tht1 to ER, interacting with Sey1 ER fusion GTPase for proper meiotic nuclear fusion. In akr1, tht1, or sey1 mutant, meiotic cells, haploid nuclei are unfused with subsequent chromosome segregation defects. Erf2-Erf4 has an additional substrate of the spore coat protein Isp3. In the absence of Erf2, Isp3 is mislocalized from the spore coat. Together, these results highlight the versatility of the cellular processes in which protein S-palmitoylation participates.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Lipoilación/fisiología , Meiosis , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Life Sci ; 313: 121276, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36496032

RESUMEN

AIM: LncRNAs are highly expressed in the CNS and regulate pathophysiological processes. However, the potential role of lncRNAs inischemic stroke (IS) remains unknown. In this study, we investigated the functions and possible molecular mechanism of lncRNA paternal expressed gene 11 antisense (PEG11as) in this process. METHODS: Middle cerebral artery occlusion/reperfusion (MCAO/R) mice model and N2a cells model from oxygen-glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral I/R in vivo and in vitro. High-throughput sequencing (RNA-Seq) was used todetect differential expression of lncRNAs in cerebral I/R. QRT-PCR was used to detect the expression of PEG11as and miR-342-5p. Bioinformatics analysis, FISH, luciferase reporter assay, RIP, Western blot, and immunofluorescence were used to detect the interaction between PEG11as, miR-342-5p and PFN1. The effect on neuronal apoptosis was analyzed using loss-of-function combined with TUNEL, Hoechst, and caspase3 activity assays. KEY FINDINGS: 254 lncRNAs were differentially expressed in MCAO1h/R6h mice. Among them, PEG11as was significantly up-regulated. PEG11as down-regulated could markedly attenuate the brain infarct volume, alleviate neurological deficit in vivo, and effectively promote neuron survival, attenuate neuronal apoptosis both in vivo and in vitro. FISH assay discovered that PEG11as was mainly located in the cytoplasm. Furthermore, we demonstrated that PEG11as was able to bind miR-342-5p to inhibit miR-342-5p activity, whereas the down-regulated of miR-342-5p resulted in profilin 1 (PFN1) overexpression and thus promoting apoptosis. SIGNIFICANCE: This study suggests that PEG11as regulates neuronal apoptosis by miR-342-5p/PFN1 axis, which may contribute to our understanding of pathogenesis and provide a potential therapeutic option for cerebral I/R.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , MicroARNs , ARN Largo no Codificante , Daño por Reperfusión , Accidente Cerebrovascular , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Profilinas , MicroARNs/genética , MicroARNs/metabolismo , Accidente Cerebrovascular/genética , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Apoptosis/genética , Glucosa/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo
19.
Virol J ; 19(1): 218, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522677

RESUMEN

BACKGROUND: Clinical data on patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant are limited, especially on clinical status after the application of antibody therapy. METHODS: We evaluated clinical status in patients with the SARS-CoV-2 delta variant after BRII-196 and BRII-198 treatment in an infectious disease hospital in China. We collected data on clinical symptoms, laboratory tests, radiological characteristics, viral load, anti-SARS-CoV-2 antibodies, treatment, and outcome. RESULTS: In mid-June 2021, 36 patients with delta variant infection were identified in Shenzhen. The most common symptoms at illness onset were cough (30.6%), fever (22.2%), myalgia (16.7%), and fatigue (16.7%). A small number of patients in this study had underlying diseases, including diabetes (5.6%) and hypertension (8.3%). The application of BRII-196 and BRII-198 can rapidly increase anti-SARS-CoV-2 IgG. The median peak IgG levels in the antibody treatment group were 32 times higher than those in the control group (P < 0.001). The time from admission to peak IgG levels in the antibody treatment group (mean: 10.2 days) was significantly shorter than that in the control group (mean: 17.7 days). Chest CT score dropped rapidly after antibody therapy, with a mean duration of 5.74 days from admission to peak levels. CONCLUSION: The results of this study suggest that the application of BRII-196 and BRII-198 antibody therapy improved clinical status in patients with SARS-CoV-2 delta variant infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales , Inmunoglobulina G
20.
Int J Ophthalmol ; 15(10): 1657-1664, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262858

RESUMEN

AIM: To analyse the association of sleep quality with myopia under different genetic risk (GR) levels. METHODS: A cross-sectional survey of students aged 9-14y in Wenzhou, China, was conducted. Refraction without cycloplegia and ocular parameters were measured. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). Seventeen single nucleotide polymorphisms (SNPs) were replicated by association analysis and used to compute the GR score (GRS). Possible confounders were assessed by a questionnaire that collected information about the children and their parents. Generalized linear models were used to analyse the sleep quality, the GR, and their interaction effects on the risk of myopia. RESULTS: Out of 1354 children included in this study, 353 (26.07%) had sleep disturbances. The GRS ranged from 4.49 to 12.89 with a mean of 7.74±1.23, and the participants were divided into a low GR group, a moderate GR group and a high GR group according to the GRS quartile. In the generalized linear model, the children with sleep disturbances and high GR had a higher risk of myopia than those without sleep disturbances and with low GR (OR=1.59, 95%CI: 1.12-2.25; OR=1.88, 95%CI: 1.23-2.88, respectively). Compared to those with low GR and SDs, children with high GR with or without SDs had a higher risk of myopia (OR=4.88, 95%CI: 2.03-11.71; OR=1.70, 95%CI: 1.06-2.72, respectively). CONCLUSION: The prevalence of sleep disturbances in elementary school students in Wenzhou was 26.07%. There is a significant interaction between sleep disturbances and a high GR of myopia, suggesting that a high GR of myopia may increase children's sensitivity to sleep disturbances. This study indicates that children with a high GR of myopia need to achieve adequate sleep duration and excellent sleep quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...